FOTOSINTESIS
La fotosíntesis es uno de los
procesos metabólicos de los que se valen las células para obtener energía.
Es
un proceso complejo, mediante el cual los seres vivos poseedores de clorofila y otros pigmentos, captan energía lumn ellos
transforman el agua y el CO2 en compuestos orgánicos reducidos
(glucosa y otros), liberando oxígeno:
LUZ
clorofila
La energía captada en la
fotosíntesis y el poder reductor adquirido en el proceso, hacen posible la
reducción y la asimilación de los bioelementos necesarios, como nitrógeno y
azufre, además de carbono, para formar materia viva.
La radiación luminosa llega a
la tierra en forma de"pequeños paquetes", conocidos como cuantos o
fotones. Los seres fotosintéticos captan la luz mediante diversos pigmentos
fotosensibles, entre los que destacan por su abundancia las clorofilas y carotenos.
Al absorber los pigmentos la
luz, electrones de sus moléculas adquieren niveles energéticos superiores,
cuando vuelven a su nivel inicial liberan la energía que sirve para activar una
reacción química: una molécula de pigmento se oxida al perder un electrón
que es recogido por otra sustancia, que se reduce. Así la clorofila
puede transformar la energía luminosa en energía química..
En la fotosíntesis se
diferencian dos etapas, con dos tipos de reacciones:
-
Fase luminosa: en en tilacoide en ella se producen transferencias de electrones.
-
Fase oscura: en el estroma. En ella se realiza la fijación de carbono
FASE LUMINOSA
Los hechos que ocurren en la
fase luminosa de la fotosíntesis se pueden resumir en estos puntos:
-
Síntesis de ATP o fotofosforilación que puede ser:
-
acíclica o abierta
-
cíclica o cerrada
-
-
Síntesis de poder reductor NADPH
-
Fotolisis del agua
Los pigmentos presentes en los
tilacoides de los cloroplastos se encuentran organizados en
fotosistemas(conjuntos funcionales formados por más de 200 moléculas de
pigmentos); la luz captada en ellos por pigmentos que hacen de antena, es
llevada hasta la molécula de "clorofila diana" que es la molécula que se oxida
al liberar un electrón, que es el que irá pasando por una serie de
transportadores, en cuyo recorrido liberará la energía.
Existen dos tipos de
fotosistemas, el fotosistema I (FSI), está asociado a
moléculas de clorofila que absorben a longitudes de ondas largas (700 nm)y se
conoce como P700. El fotosistema II (FSII), está
asociado a moléculas de clorofila que absorben a 680 nm. por eso se denomina
P680.
La luz es recibida en el FSII por la clorofila P680 que
se oxida al liberar un electrón que asciende a un nivel
superior de energía; ese electrón es recogido por una sustancia aceptora de
electrones que se reduce,la Plastoquinona (PQ) y desde
ésta va pasando a lo largo de una cadena transportadora de electrones, entre los
que están varios citocromos (cyt b/f) y así llega hasta
la plastocianina (PC) que se los cederá a moléculas de
clorofila del FSI.
En el descenso por esta cadena, con oxidación y reducción en cada paso , el electrón va liberando
la energía que tenía en exceso; energía que se utiliza para bombear protones de hidrógeno desde el estroma hasta el
interior de los tilacoides, generando un gradiente electroquímico de
protones. Estos protones vuelven al estroma a través de la ATP-asa y se originan moléculas de
ATP.
El fotosistema II se reduce al
recibir electrones procedentes de una molécula de H2O, que también por acción de
la luz, se descompone en hidrógeno y oxígeno, en el proceso llamado fotólisis del H2O. De este modo se puede mantener un
flujo continuo de electrones desde el agua hacia el
fotosistema II y de éste al fotosistema I.
En el fotosistema I la luz produce el mismo efecto sobre la
clorofila P700, de modo que algún electrón adquiere un nivel energético superior
y abandona la molécula, es recogido por otro aceptor de electrones , la ferredoxina y pasa por una nueva cadena de transporte hasta
llegar a una molécula de NADP+ que es reducida a NADPH,al recibir dos electrones
y un protón H+ que también procede de la descomposición del H2O.
Los dos fotosistemas pueden actuar conjuntamente - proceso
conocido como esquema en Z, para producir la fotofosforilación (obtención de ATP) o hacerlo
solamente el fotosistema I; se diferencia entonces entre fosforilación no cíclica o acíclica cuando actúan
los dos, y fotofosforilación cíclica,
cuando actúa el fotosistema I unicamente. En la fotofosforilación acíclica se obtiene ATP y se reduce el NADP+ a
NADPH , mientras que en la fotofosforilación cíclica únicamente se obtiene ATP y no se libera
oxígeno.
Mientras la luz llega a
los fotosistemas, se mantiene un flujo de electrones desde el agua al
fotosistema II, de éste al fotosistema I, hasta llegar el NADP+ que los recoge;
ésta pequeña corriente eléctrica es la que mantiene el ciclo de la vida.
|
FASE
OSCURA
En esta fase, se va a utilizar la energía química obtenida en la fase luminosa, en
reducir CO2, Nitratos y Sulfatos y asimilar los bioelementos C, H, y S, con el
fin de sintetizar glúcidos, aminoácidos y otras
sustancias.
Las plantas obtiene el CO2 del aire a través de los estomas
de sus hojas. El proceso de reducción del carbono es cíclico y se conoce como
Ciclo de Calvin., en honor de su descubridor M.
Calvin.
La fijación del CO2 se produce en tres fases:
-
Carboxilativa: El CO2 se fija a una molécula de 5C, la ribulosa 1,5 difosfato, formándose un compuesto inestable de 6C, que se divide en dos moléculas de ácido 3 fosfoglicérico conocido también con las siglas de PGA
-
Reductiva:El ácido 3 fosfoglicérico se reduce a gliceraldehido 3 fosfato, también conocido como PGAL ,utilizándose ATP Y NADPH.
-
Regenerativa/Sintética: Las moléculas de gliceraldehido 3 fosfato formadas siguen diversas rutas; de cada seis moléculas, cinco se utilizan para regenerar la ribulosa 1,5 difosfato y hacer que el ciclo de calvin pueda seguir, y una será empleada para poder sintetizar moléculas de glucosa (vía de las hexosas), ácidos grasos, amoinoácidos... etc; y en general todas las moléculas que necesita la célula.
En el ciclo para fijar el CO2, intervienen una serie de
enzimas, y la más conocida es la enzima Rubisco
(ribulosa 1,5 difosfato carboxilasa/oxidasa), que puede actuar como
carboxilasa o como oxidasa, según la concentración de CO2.
Si la concentración de CO2 es
baja, funciona como oxidasa, y en lugar de ayudar a la fijación de CO2 mediante
el ciclo de Calvin, se produce la oxidación de glúcidos hasta CO2 y H2O, y al
proceso se le conoce como fotorrespiración. La
fotorrespiración no debe confundirse con la respiración mitocondrial, la energía
se pierde y no se produce ni ATP ni NADPH; y como se ve en el esquema se
disminuye el rendimiento de la fotosíntesis, porque sólo se produce una molécula
de PGA que pasará al ciclo de Calvin; en cambio cuando funciona como
carboxilasa, se obtienen dos moléculas de PGA.
No hay comentarios:
Publicar un comentario